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(57) ABSTRACT

Computing systems and methods are provided for detecting
skin conditions of humans. A computing device can authen-
ticate a user via a fingerprint scan of a first skin region of the
user using a three-dimensional (3D) sonic sensor. The device
can generate a three-dimensional (3D) volumetric sonic
measurement of a second skin region of the user based at
least in part on one or more sonic pulses of the three-
dimensional sonic sensor. The device can input data indica-
tive of the 3D volumetric sonic measurement into one or
more machine-learning models, generate one or more skin
cancer condition identifications associated with the second
skin region of the user based on one or more outputs of the
one or more machine-learned models, and provide one or
more outputs including the one or more skin cancer condi-
tion identifications associated with the second skin region of
the user.
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EARLY SKIN CONDITION DIAGNOSTICS
USING SONIC SENSORS

RELATED APPLICATIONS

This application is based on and claims benefit of U.S.
Provisional Patent Application No. 63/053,343, titled “Early
Skin Condition Diagnostics Using Sonic Sensors,” filed on
Jul. 17, 2020, which is hereby incorporated by reference
herein in its entirety.

FIELD

The present disclosure relates generally to computer-
implemented systems using sensors for diagnostics of skin
conditions such as cancer.

BACKGROUND

Melanoma, a type of skin cancer, is known to be one of
the most unpredictable tumors, because of its high variabil-
ity in morphology. In some cases, even experienced derma-
tologists can give conflicting diagnostics results based on
visual analysis of skin lesion surface (reference). Thus,
medical imaging tools such as optical coherence tomogra-
phy (OCT) or ultrasonography, that perform in vivo imaging
of below the dermis layer to clearly differentiate skin cancer
from other non-malignant conditions is helpful. However,
these tools may be expensive and not readily available to the
average consumer for easy check-ups to take early preven-
tive action for detecting melanoma and other skin condi-
tions.

SUMMARY

Aspects and advantages of embodiments of the present
disclosure will be set forth in part in the following descrip-
tion, or may be learned from the description, or may be
learned through practice of the embodiments.

According to one example aspect of the present disclo-
sure, a computer-implemented method for generating skin
condition diagnostics includes authenticating, by one or
more processors of a user computing device, a user via a
fingerprint scan of a first skin region of the user using a
three-dimensional (3D) sonic sensor of the user computing
device. The method includes generating, by the one or more
processors, a three-dimensional (3D) volumetric sonic mea-
surement of a second skin region of the user based at least
in part on one or more sonic pulses of the 3D sonic sensor.
The method includes inputting, by the one or more proces-
sors, data indicative of the 3D volumetric sonic measure-
ment into one or more machine-learning models configured
to identify one or more skin conditions in response to one or
more 3D volumetric sonic measurement inputs. The method
includes generating, by the one or more processors based on
one or more outputs of the one or more machine-learned
models, one or more skin condition identifications associ-
ated with the second skin region of the user. The method
includes providing, by the user computing device, one or
more outputs including the one or more skin condition
identifications associated with the second skin region of the
user.

According to another example aspect of the present
disclosure, a computing device includes one or more three-
dimensional (3D) sonic sensors, one or more processors, and
one or more non-transitory computer-readable media that
collectively store instructions that when executed by the one
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or more processors cause the one or more processors to
perform operations. The operations include generating a
three-dimensional (3D) volumetric sonic measurement of a
skin region of a user based at least in part on one or more
sonic pulses of the one or more 3D sonic sensors, inputting
data indicative of the 3D volumetric sonic measurement into
one or more machine-learning models configured to identify
one or more skin conditions in response to one or more 3D
volumetric sonic measurement inputs, generating, based on
one or more outputs of the one or more machine-learned
models, one or more skin condition identifications associ-
ated with the skin region of the user, and providing one or
more outputs including the one or more skin condition
identifications associated with the skin region of the user.

According to yet another example aspect of the present
disclosure, one or more non-transitory computer-readable
media store computer instructions, that when executed by
one or more processors, cause the one or more processors to
perform operations. The operations include generating a
three-dimensional (3D) volumetric sonic measurement of a
skin region of a user based at least in part on one or more
sonic pulses of one or more 3D sonic sensors, inputting data
indicative of the 3D volumetric sonic measurement into one
or more machine-learning models configured to identify one
or more skin conditions in response to one or more 3D
volumetric sonic measurement inputs, generating, based on
one or more outputs of the one or more machine-learned
models, one or more skin condition identifications associ-
ated with the skin region of the user, and providing one or
more outputs including the one or more skin condition
identifications associated with the skin region of the user.

Other example aspects of the present disclosure are
directed to systems, apparatus, computer program products
(such as tangible, non-transitory computer-readable media
but also such as software which is downloadable over a
communications network without necessarily being stored
in non-transitory form), user interfaces, memory devices,
and electronic devices for generating diagnostic indications
of skin conditions using sonic sensors.

These and other features, aspects and advantages of
various embodiments will become better understood with
reference to the following description and appended claims.
The accompanying drawings, which are incorporated in and
constitute a part of this specification, illustrate embodiments
of the present disclosure and, together with the description,
serve to explain the related principles.

BRIEF DESCRIPTION OF THE DRAWINGS

Detailed discussion of embodiments directed to one of
ordinary skill in the art are set forth in the specification,
which makes reference to the appended figures, in which:

FIG. 1 depicts a block diagram of an example computing
device in accordance with example embodiments of the
present disclosure;

FIG. 2 depicts a block diagram of an example computing
device and depicts various implementations of computing
devices in accordance with example embodiments of the
present disclosure;

FIG. 3 depicts a block diagram illustrating a user scanning
a skin region using a sonic sensor of a user computing device
in accordance with example embodiments of the present
disclosure;

FIG. 4 depicts a block diagram of a user computing device
providing an output including a skin condition identification
associated with a skin region of a user in accordance with
example embodiments of the present disclosure;
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FIG. 5 depicts an example user flow of scanning a
candidate skin region using a computing device and visiting
a dermatologist in response to a screening that results in
positive skin condition identification in accordance with
example embodiments of the present disclosure;

FIG. 6 depicts examples of skin conditions including a
birthmark, a mole, a papilloma, and a melanoma;

FIG. 7 depicts a diagram illustrating a skin cancer that
penetrates dermal layers over time while the surface char-
acteristics can appear similar;

FIG. 8 depicts a block diagram of an example computing
device including a three-dimensional (3D) sonic sensor in
accordance with embodiments of the present disclosure;

FIG. 9 depicts a simplified illustration of a sonic sensor
including a single-transducer and the emission and detection
of ultrasonic pulses in accordance with example embodi-
ments of the present disclosure;

FIG. 10 is a flowchart depicting an example process of
generating skin condition identifications associated with a
skin region of a user in accordance with example embodi-
ments of the present disclosure;

FIG. 11 is a flowchart depicting an example process of
generating three-dimensional ultrasonic measurement data
based on back-reflection associated with one or more ultra-
sonic pulses in accordance with example embodiments of
the present disclosure;

FIG. 12 depicts an example of skin regions corresponding
to a melanoma and a non-malignant tumor;

FIG. 13 depicts a block diagram of an example computing
system for training and deploying a machine-learned model
in accordance with example embodiments of the present
disclosure;

FIG. 14 is a flowchart depicting an example process of
identifying features that minimize the error between the data
indicative of the 3D volumetric ultrasonic measurement and
the dictionary of skin cancer features;

FIG. 15 depicts a sample recovery of true cell volumes
from dispersion-corrupted volumetric sonic measurements
depicted in FIG. 12;

FIG. 16 is a flowchart depicting an example method for
training a machine-learned model configured for classifica-
tion of skin conditions based on 3D volumetric ultrasonic
data;

FIG. 17 depicts a block diagram of an example computing
system for training and deploying a machine-learned model
in accordance with example embodiments of the present
disclosure;

FIG. 18 depicts a block diagram of an example computing
device that can be used to implement example embodiments
in accordance with the present disclosure; and

FIG. 19 depicts a block diagram of an example computing
device that can be used to implement example embodiments
in accordance with the present disclosure.

DETAILED DESCRIPTION

Reference now will be made in detail to embodiments,
one or more examples of which are illustrated in the draw-
ings. Each example is provided by way of explanation of the
embodiments, not limitation of the present disclosure. In
fact, it will be apparent to those skilled in the art that various
modifications and variations can be made to the embodi-
ments without departing from the scope or spirit of the
present disclosure. For instance, features illustrated or
described as part of one embodiment can be used with
another embodiment to yield a still further embodiment.
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Thus, it is intended that aspects of the present disclosure
cover such modifications and variations.

The present disclosure is directed to a skin condition
diagnostic system that leverages machine learning and sen-
sors such as sonic fingerprint sensors to provide accurate
skin condition identifications using consumer-level devices
such as smartphones. In accordance with example embodi-
ments, a sonic fingerprint sensor generates sonic data that is
processed to generate volumetric data including depth infor-
mation. The volumetric data is then analyzed using machine-
learning techniques to generate accurate diagnostics of skin
conditions such as skin cancer.

Traditional diagnostic tools such as optical coherence
tomography (OCT) or ultrasonography tools are typically
not readily available to the average consumer to perform
check-ups to take early preventative action. Moreover, these
tools often require a skilled technician to operate and
observe data in order to make even a preliminary assessment
of potential conditions such as cancers associated with a skin
region of a user.

In accordance with example embodiments of the present
disclosure, readily available sensors such as sonic finger-
print sensors included with many smartphones are utilized in
combination with machine learning techniques to provide
accurate diagnostics of skin conditions such as skin cancer.
According to an example aspect of the present disclosure, a
three-dimensional (3D) sonic fingerprint sensor can generate
a 3D volumetric sonic measurement of a skin region of a
user. In some examples, the 3D sonic fingerprint sensor can
be a 3D ultrasonic fingerprint sensor and the 3D volumetric
sonic measurement can be a 3D volumetric ultrasonic mea-
surement. The 3D volumetric sonic measurement is gener-
ated using a combination of beamforming to generate high
resolution measurement data in lateral and longitudinal
directions and time resolution processing to generate depth
information indicative of a skin condition volume below an
outer skin surface. The 3D volumetric sonic data can be
provided as input to one or more machine-learned models
configured to identify one or more skin cancer conditions
based on 3D volumetric sonic data.

In accordance with example embodiments, a 3D ultra-
sonic sensor of a computing device is used to generate
three-dimensional volumetric data that is indicative of skin
features both at the outer surface of the user’s skin and
below the skin surface. Back-reflection of sonic pulses at the
outer surface of the skin can be measured to generate lateral
data (e.g., x-direction) and longitudinal data (e.g., y-direc-
tion) indicative of skin features at the outer surface of the
user’s skin. A pulse entering the below-surface region of the
user’s skin results in sub-surface scattering. Back-reflection
of the pulse entering the below-surface region can be
measured to generate depth data indicative of skin features
in the below-surface region of the user’s skin. The received
waveform(s) that result from the backscattering can be time
resolved to determine depth data associated with the surface
skin features. Moreover, the received waveform is the inte-
gral energy of pulses that are back-reflected at one or more
epidermal and/or dermal layers below the outer surface.
Thus, the received waveform is not simply a time-shifted
version of the original waveform. Rather, its integral energy
is indicative of the sub-surface skin properties. Typically,
such back-scattered pulses are simply ignored by fingerprint
sensors and the like that are focused on measuring outer
surface features such as a fingerprint’s ridges and valleys.
By contrast, the present disclosure leverages the time-
resolved properties of the received waveform(s) to provide
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a sonic measurement in three dimensions that is indicative of
the properties both at and below the surface of a skin region
of a user.

Three-dimensional volumetric sonic data generated in
response to a scan of a skin region of a user can be processed
using various machine-learning techniques to identify skin
conditions such as skin cancers. According to an example
aspect of the present disclosure, a sparse dictionary machine
learning approach to identify skin cancer responses is pro-
vided. A dictionary of skin cancer or other features can be
constructed in a three-dimensional sonic sensing domain and
an optimization problem can be enforced using machine-
learning to find a representation in the dictionary that best
matches or fits to input volumetric sonic data. In example
embodiments, the dictionary can be constructed using sensor
data that is generated using a sonic sensor having a higher
resolution than the sonic sensor of the computing device that
is used to scan a user. By way of example, the sonic sensor
of a computing device such as a smartphone for scanning a
user may include an array of tens to thousands of transducers
(e.g., 5x5-50x50 arrays) while a laboratory device used to
generate the dictionary may include may more transducers
such as thousands to millions of transducers (e.g., 100x100
array). In this manner, a more accurate representation of skin
cancer features can be used by the model when comparing
to input data.

In accordance with example embodiments, the machine-
learning system may apply forward voxel blurring to the
dictionary of skin features to simulate voxel blurring asso-
ciated with the 3D sonic sensors of user computing devices.
It may be observed that a voxel blurring phenomenon can
occur in a consumer-level sonic sensor because of non-linear
sub-surface ultrasonic scattering. For instance, a widened,
dispersion-suffering pulse may be observed as a result of this
non-linear scattering. Such blurring can lead to very little
visual separation between a skin cancer such as melanoma
and a non-skin cancer such as non-melanoma when com-
pared to the true representation where the increased depth of
the feature can be observed as a strong cue for diagnostics.

According to an example aspect of the present disclosure,
a machine-learning system enforces an optimization prob-
lem to find a skin feature representation in the dictionary that
most closely matches the feature(s) of the skin region of the
user represented by the input volumetric data. As an
example, an iterative shrinkage thresholding method can be
used to solve an optimization with deterministic conver-
gence. For instance, a gradient descent can be computed on
a data loss term representing the difference between the
dictionary feature and the user skin feature. A proximal map
can then be computed and these two operations iterated until
a convergence rule is met. By enforcing an optimization in
this manner, a recovery of the true cell volumes from the
dispersion-corrupted volumetric sonic measurements can be
provided.

A sparse dictionary learning approach enables a con-
sumer-level computing device to generate diagnostics whose
logic and process can be observable by a clinician. By way
of example, the machine-learning diagnostic system can
provide an output indicative of one or more skin cancer
features from the dictionary that were the basis for the
diagnosis. In this manner, a clinician such as a doctor or
other professional may assess the process by which the
system generated diagnostic data. As such, the clinician not
only has access to the final output but also the process and
data underlying the diagnostic. Such an approach can enable
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a clinical and technical evaluation of the output that may be
useful in a final determination by the clinician making an
assessment.

According to some example aspects, an end-to-end
machine-learned model is provided that takes as input raw
volumetric ultrasonic data and generates as an output one or
more indications of skin condition(s). A machine-learned
detection or classification approach can be provided to
identify skin conditions directly in response to 3D volumet-
ric ultrasonic data. In this example, a dictionary of skin
condition features is not necessarily provided. The end-to-
end model may operate without an on-device dictionary of
skin cancer features. Rather, the model may be trained using
high and/or low resolution ultrasonic data to make infer-
ences such as classifications of the input data. The training
data can be annotated to indicate skin conditions. A super-
vised or semi-supervised learning approach can be used to
train the model to identify skin cancer conditions.

Embodiments in accordance with the present disclosure
provide a number of technical effects and benefits. By way
of example, beamforming to generate sensor data using
small transducer arrays, time-resolution of sensor data,
and/or machine-learning techniques can be used indepen-
dently or together to leverage relatively small and cost-
effective sonic sensors for accurate in-field diagnostics of
skin conditions such as cancers. Traditional sensor-based
systems for skin condition diagnostics utilize large trans-
ducer arrays that operate in relatively low frequency ranges
(e.g., 1-6 MHz). These devices may operate in continuous
doppler modes to generate high resolution images. Thus,
these devices are not small consumer operable devices. By
the nature of the components involved, the devices tend to
be large and expensive. Moreover, a skilled technician is
often required for operation and a skilled clinician required
to observe the data for making accurate diagnostics.

According to example embodiments of the present dis-
closure, relatively small and inexpensive transducers can be
leveraged to provide automatic diagnostic information. By
way of example, beamforming and time-resolution of back-
scattered pulses can be employed to increase the resolution
of the transducer array. The transmitted beam can be steered
spatially using time delay or other techniques. Beamsteering
can be accomplished in both lateral (x) and longitudinal (y)
directions. Moreover, sub-surface scattering of pulses enter-
ing a sub-surface region can be measured by time-resolving
back-reflection of the pulse(s). In this manner, a higher
resolution volumetric measurement can be provided to gen-
erate ultrasonic data in three dimensions. By generating
depth information, the system can resolve volume density to
provide higher clinical accuracy than simple surface imagers
such as cameras that take images of the skin. In some
examples, the transducer array can operate at frequencies
higher than conventional sonography systems. For example,
the transducer array may operate at a frequency of about 50
MHz in some embodiments. In yet other examples, other
frequencies higher than 6 MHz can be used.

Further, machine-learning techniques are provided to
accurately determine skin conditions from the volumetric
ultrasonic data. According to example embodiments, a
sparse dictionary learning approach is provided that enables
on-device learning of a closest match between input sensor
data and high resolution data in a dictionary of skin cancer
features. High resolution data can be used to generate the
dictionary, and the machine-learning system can enforce an
optimization problem to find a representation that provides
the closest match to the input data. Such an approach can
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overcome the voxel blurring phenomenon sometimes asso-
ciated with lower resolution transducer arrays.

In some implementations, in order to obtain the benefits
of the techniques described herein, the user may be required
to allow the collection and analysis of sensor data associated
with the user or their device. For example, in some imple-
mentations, users may be provided with an opportunity to
control whether programs or features collect such informa-
tion. If the user does not allow collection and use of such
signals, then the user may not receive the benefits of the
techniques described herein. The user can also be provided
with tools to revoke or modify consent. In addition, certain
information or data can be treated in one or more ways
before it is stored or used, so that personally identifiable
information is removed. As an example, a computing system
can obtain sensor data which can indicate a scan, without
identifying any particular user(s) or particular user comput-
ing device(s).

With reference now to the figures, example aspects of the
present disclosure will be discussed in greater detail.

FIG. 1 depicts an example of a computing device 100.
Computing device 100 may be any mobile or non-mobile
computing device. As a mobile computing device, the com-
puting device 100 can be a mobile phone, a laptop computer,
a wearable device (e.g., watches, eyeglasses, headphones,
clothing), a tablet device, an automotive/vehicular device, a
portable gaming device, an electronic reader device, or a
remote-control device, or other mobile computing device
including a skin diagnostic system 104. As a non-mobile
computing device, the computing device 100 may represent
a server, a network terminal device, a desktop computer, a
television device, a display device, an entertainment set-top
device, a streaming media device, a tabletop assistant
device, a non-portable gaming device, business conferenc-
ing equipment, a payment station, a security checkpoint
system, or other non-mobile computing device including
skin diagnostic system 104.

Computing device 100 includes an application 102, skin
diagnostic system 104, including a sonic fingerprint sensor
106 and a machine-learned diagnostic system 108. These
and other components of computing device 100 are com-
municatively coupled in various ways, such as through the
use of wired and wireless buses and links. Computing device
100 may include additional or fewer components than what
is shown in FIG. 1.

The application 102 can interface with skin diagnostic
system 104 to provide information and data to and from the
skin diagnostic system such as for consumption by user or
other systems. In some examples, application 102 can be a
secured component of the computing device 100 or an
access point to secure information accessible from the
computing device 100. The application 102 may include or
be part of an operating system. Many other examples of the
application 102 exist. The application 102 may execute
partially on the computing device 100 and partially in “the
cloud” (e.g., on the Internet). For example, the application
102 may provide an interface to an online account, such as
through an internet browser or an application programming,
interface (API).

A computing device (e.g., a user device, a mobile tele-
phone, a tablet computer, a wristwatch) may use a sensor
such as an optical fingerprint sensor or ultrasonic fingerprint
sensor to generate a representation such as an image of a
fingerprint or an image of another portion of the skin of a
user. Sensor 106 can be any sensor able to generate a
representation of a fingerprint or other region of the skin of
a user, such as by capturing an ultrasonic measurement of a
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skin region. The sensor 106 may be an optical fingerprint
sensor or an ultrasonic fingerprint sensor such as a three-
dimensional ultrasonic fingerprint sensor. For ease of
description, sensor 106 is generally described as being
integrated with a display that presents a graphical user
interface (GUI). For example, sensor 106 can be an in-
display ultrasonic fingerprint sensor integrated with a touch
screen. The GUI may include instructions for the user to
follow to use the sensor 106. For example, the GUI may
include a target graphical element (e.g., an icon, a designated
region) where the user is to position or touch an area to
provide the sensor access to a region of their skin.

Machine-learned diagnostic system 108 includes one or
more machine-learned models configured to generate infer-
ence data indicative of skin conditions in response to input
sensor data. For example, sensor data from screening a skin
region by an ultrasonic sensor can be provided as input to the
one or more machine-learned models. The machine-learned
models(s) are trained to generate inferences indicative of
skin conditions such as a melanoma associated with a skin
region.

FIG. 2 depicts another example computing device 200
such as a user computing device that can serve as a skin
condition diagnostic device, such as a skin cancer diagnostic
device that utilizes a fingerprint sensor. By way of example,
computing device 200 may be a smartphone that includes an
in-display ultrasonic fingerprint sensor that can serve as a
clinical-grade ultrasonography device using a time-resolved
design and machine-learning. Computing devices 200 are
illustrated with various non-limiting example devices:
server 200-1, smart phone 200-2, laptop 200-3, computing
spectacles 200-4, television 200-5, camera 200-6, tablet
200-7, desktop 200-8, and smart watch 200-9, though other
devices may also be used, such as home automation and
control systems, sound or entertainment systems, home
appliances, security systems, netbooks, e-readers, gaming
systems or controllers, smart speaker systems, appliances,
automobiles, unmanned vehicles (in-air, on the ground, or
submersible “drones”), trackpads, drawing pads, netbooks,
doorbells, refrigerators, and other devices with a sensor such
as an ultrasonic fingerprint sensor.

Note that computing device 200 can be wearable (e.g.,
computing spectacles and smart watches), non-wearable but
mobile (e.g., laptops and tablets), or relatively immobile
(e.g., desktops and servers). Computing device 200 may be
a local computing device, such as a computing device that
can be accessed over a bluetooth connection, near-field
communication connection, or other local-network connec-
tion. Computing device 200 may be a remote computing
device, such as a computing device of a cloud computing
system.

Computing device 200 can communicate with other com-
puting devices over one or more networks such as one or
more of many types of wireless or partly wireless commu-
nication networks, such as a local-area-network (LAN), a
wireless local-area-network (WLAN), a personal-area-net-
work (PAN), a wide-area-network (WAN), an intranet, the
Internet, a peer-to-peer network, point-to-point network, a
mesh network, and so forth.

Computing device 200 includes one or more processors
202, computer-readable media 204, sensor system(s) 210,
communication system(s) 206, and input output (I/O) sys-
tem(s) 208. Processor(s) 202 may include any combination
of one or more controllers, microcontrollers, processors,
microprocessors, hardware processors, hardware processing
units, digital-signal-processors, graphics processors, graph-
ics processing units, and the like. The processors 202 may be
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an integrated processor and memory subsystem (e.g., imple-
mented as a “system-on-chip”), which processes computer-
executable instructions to control operations of the comput-
ing device 200. The processors can be any suitable
processing device (e.g., a processor core, a MiCroprocessor,
an ASIC, a FPGA, a controller, a microcontroller, etc.) and
can be one processor or a plurality of processors that are
operatively connected. The computer-readable media can
include one or more non-transitory computer-readable stor-
age media, such as RAM, ROM, EEPROM, EPROM, flash
memory devices, magnetic disks, etc., and combinations
thereof. The computer processors 202 and the computer-
readable media 204 can include memory media and storage
media.

The memory can store instructions 224 (e.g., one or more
applications), at least a portion of machine-learning diag-
nostic system 226, and data 230. Instructions 224 are
executed by the processor 202 to cause the computing
device 200 to perform operations. Machine-learning diag-
nostic system 226 can include one or more machine-learned
diagnostic models 228. Machine-learning diagnostic system
226 is one example of machine-learned diagnostic system
108. Computer-readable media 204 can include any com-
puter-readable media and can be configured as persistent and
non-persistent storage of executable instructions (e.g., firm-
ware, software, applications, modules, programs, functions)
and data (e.g., user data, operational data, online data) to
support execution of the executable instructions. Examples
of the computer-readable media 204 include volatile
memory and non-volatile memory, fixed and removable
media devices, and any suitable memory device or electronic
data storage that maintains executable instructions and sup-
porting data. The computer-readable media 204 can include
various implementations of random-access memory (RAM),
read-only memory (ROM), flash memory, and other types of
storage memory in various memory device configurations.
The computer-readable media 204 may be a solid-state drive
(SSD) or a hard disk drive (HDD).

Communication system(s) 206 can include various con-
nections and/or interfaces. For example, communication
system(s) 206 can include bluetooth connections, near-field
communication connections, or other local-network connec-
tions, for example. Communication system(s) 206 can com-
municate using one or more networks such as wireless or
partly wireless communication networks, such as a local-
area-network (LAN), a wireless local-area-network
(WLAN), a personal-area-network (PAN), a wide-area-net-
work (WAN), an intranet, the Internet, a peer-to-peer net-
work, point-to-point network, a mesh network, and so forth.

Input/output (I/O) components 208 can operate as an
input device and/or an output device, for example, present-
ing a GUI and receiving inputs directed to the GUIL Other
programs, services, and applications (not shown) can be
implemented as computer-readable instructions on the com-
puter-readable media 204, which can be executed by the
computer processors 202 to provide functionalities
described herein. Fingerprint sensor 212 is included as one
of the sensors of sensor system 210. Fingerprint sensor 212
is one example of a fingerprint sensor 106.

The communication system(s) 206 and/or 1/O system(s)
can provide connectivity to the computing device 200 and
other devices and peripherals. The communication and 1/O
components can include data network interfaces that provide
connection and/or communication links between the device
and other data networks, devices, or remote systems (e.g.,
servers). The communication and/or I/O components couple
the computing device 200 to a variety of different types of
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components, peripherals, or accessory devices. Data input
ports of the communication and/or /O components receive
data, including image data, user inputs, communication data,
audio data, video data, and the like. The communication
and/or 1/O components enable wired or wireless communi-
cating of device data between the computing device 200 and
other devices, computing systems, and networks. Transceiv-
ers of the communication and/or /O components enable
cellular phone communication and other types of network
data communication.

In addition to fingerprint sensor 212, the sensor system
210 can include other sensors for obtaining contextual
information (e.g., sensor data) indicative of operating con-
ditions (virtual or physical) of the computing device 200 or
the surroundings of the computing device. The computing
device 200 monitors the operating conditions based in part
on sensor data generated by the sensor system 210. In
addition to the examples given for the sensor 212 to detect
fingerprints, other examples of the sensor components
include various types of cameras (e.g., optical, infrared),
radar sensors, inertial measurement units, movement sen-
sors, temperature sensors, position sensors, proximity sen-
sors, light sensors, infrared sensors, moisture sensors, pres-
sure sensors, and the like.

Melanoma, a type of skin cancer, is known to be one of
the most unpredictable tumors, because of its high variabil-
ity in morphology. In some cases, even experienced derma-
tologists can give conflicting diagnostics results based on
visual analysis of skin lesion surface (reference). Thus,
medical imaging tools such as optical coherence tomogra-
phy (OCT) or ultrasonography, that perform in vivo imaging
of below the dermis layer to clearly differentiate skin cancer
from other non-malignant conditions is helpful. However,
these tools are not readily available to the average consumer
for easy check-ups to take early preventive action.

In accordance with example embodiments of the dis-
closed technology, a computing device is provided, such as
a smartphone having a 3D ultrasonic fingerprint sensor that
is converted into a clinical-grade ultrasonography device
using novel time-resolved system design and machine learn-
ing. In accordance with example embodiments, a smart-
phone can be converted into a skin cancer diagnostic device
that can fit in a pocket, for example.

FIG. 3 depicts an example embodiment of using a com-
puting device 262 such as a user computing device that can
serve as diagnostic device, such as a skin condition diag-
nostic device that utilizes a fingerprint sensor. The user
computing device including the fingerprint sensor can be
utilized to scan a candidate skin lesion 266, located on the
skin region of the user, for skin cancer such as melanoma.
The resulting sonic measurement data can be utilized in
combination with machine learning techniques to provide
accurate diagnostics of skin conditions such as skin cancer.
The 3D volumetric sonic data can be provided as input to
one or more machine-learned models configured to identify
one or more skin cancer conditions based on 3D volumetric
sonic data.

FIG. 4 depicts an example embodiment of a computing
device 200 such as a user computing device to display
outputs of the diagnostic system. More specifically, a com-
puting device 262 such as a smartphone may be used to
display, on a display of the computing device 262, the output
of the skin cancer condition identification associated with
the candidate skin lesion located on the skin region of the
user. In one example embodiment, the output of the skin
cancer condition is determined using a machine learning
diagnostic system. By way of example, the machine-learn-
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ing diagnostic system can provide an output indicative of
one or more skin cancer features from the dictionary that
were the basis for the diagnosis. In this manner, a clinician
such as a doctor or other professional may assess the process
by which the system generated diagnostic data. Such an
approach can enable a clinical and technical evaluation of
the output that may be useful in a final determination by the
clinician making an assessment.

FIG. 5 depicts an example user flow where a user scans
a candidate skin lesion using a smartphone and visits a
dermatologist when a skin diagnostic system in accordance
with example embodiments screens a positive result for
further analysis.

A large differentiating physiological factor between mela-
noma and non-malignant conditions such as birthmarks or
moles is the increasing volume in depth. FIG. 6 depicts
examples including a birthmark, a mole, a papiloma, and a
melanoma. As illustrated in FIG. 6, different skin conditions
may appear similar at the skin surface but may be differen-
tiated by their depth in the skin and the volume density
associated with such depth.

FIG. 7 depicts a diagram where the skin cancer penetrates
dermal layers over time while the surface characteristics can
more or less look the same. Thus, imaging technologies that
can view the inside of the epidermal/dermal layer such as
ultrasonography, which is a method of using ultrasonic
pulses to resolve volume density, may have higher clinical
accuracy than simple surface imagers such as taking camera
photos of skin.

FIG. 8 depicts an example of a computing device 262 that
includes a three-dimensional (3D) ultrasonic sensor 280
located under the display of the computing device. The 3D
ultrasonic sensor on a smartphone, for example, can be used
to sense fingerprints for user authentication. The smartphone
can authenticate a user via a fingerprint scan of a first skin
region of the user using the three-dimensional sonic sensor
of the user computing device. In example embodiments
during authentication, the system generates two-dimen-
sional ultrasonic measurement data based at least in part on
back-reflection associated with one or more ultrasonic
pulses contacting an outer surface of the skin of the user
while ignoring time-resolution of back-reflection associated
with sub-surface scattering.

As described herein, a three-dimensional sonic sensor
located under the display of a computing device such as a
smartphone in accordance with example embodiments can
be used to generate a representation of a skin region of a user
that can be used for diagnostic analysis. In FIG. 8, the 3D
ultrasonic sensor can use MHz-operating ultrasonic waves to
resolve the valleys of the finger. By way of example, the 3D
ultrasonic sensor may operate at 50 MHz in example
embodiments. Other operating frequencies may be used.

The 3D ultrasonic sensor 280 may be formed on a chip
with an array structure of transducers 282. In the example of
FIG. 8, a 5x5 array of 25 transducers is used but any number
of transducers may be used. Typically, the number of trans-
ducers is less than that of a clinical grade device.

Beamforming such as beamscanning can be used to either
beamscan in the analog or digital domain. Beamscanning
can be used to increase the transverse resolution in the x
(lateral) and y (longitudinal) dimensions. The ultrasonic
sensor can form a fingerprint imager that can then be used
as a feature to cluster different users in example embodi-
ments. The sonic sensor can operate at higher frequencies
such as at or greater than 6 MHz in some examples, at or
greater than 50 MHz in some examples, and/or at or greater
than 100 MHz in some examples. Higher frequency ranges
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may be used to provide higher resolution imaging in
example embodiments. For instance, at higher frequencies
the half wavelength may apply so that transducers can be
spaced closely together (e.g., by half the wavelength). The
beam can be steered to locations between adjacent trans-
ducers to increase resolution. In example, embodiments, the
sensor generates two-dimensional ultrasonic measurement
data based at least in part on back-reflection associated with
one or more ultrasonic pulses contacting an outer surface of
the skin of the user.

According to example aspects of the present disclosure,
the system of FIG. 8 provides a design with fast analog to
digital conversion (ADC) per receive transducer in the array.
In this manner, the back-reflected ultrasonic pulses can also
be time-resolved to provide depth information in a third-
dimension (z-direction). The system can generate depth
ultrasonic measurement data based at least in part on time-
resolving back-reflection associated with sub-surface scat-
tering of one or more ultrasonic pulses entering a below-
surface region of the second skin region of the user.

FIG. 9 depicts a simple illustration of a the single-
transducer case that can be observed as a motivating
example. A narrow ultrasonic pulse (e.g., pulse 302) travels
to the skin surface, and hits the outer surface first. The skin
surface is a first target that provides the back-reflection as
illustrated. However, due to MHz skin penetration proper-
ties, one or more other pulses such as pulse 304, pulse 306,
and/or a sub-pulse of the original pulse enters the below-
surface region and generates sub-surface scattering. As
shown in the graphs of FIG. 9, the received waveform is
shifted in time from the transmission waveform due to the
distance traveled in the z-direction. Due to the sub-surface
scattering, the received waveform in time is thus not simply
a time-shifted version of the original waveform. Rather it is
the integral energy of pulses that are back-reflected at
epidermal/dermal layers below the surface, such as every
epidermal/dermal layer.

As noted above, during fingerprint scanning for authen-
tication, the fingerprinting application does not necessarily
need depth information as the high-resolution finger ridges-
and-valleys are captured just from the surface and the
time-resolution is simply ignored and a time-sum response
may be observed instead.

In accordance with example embodiments of the present
disclosure, the time-resolving property can be utilized. For
skin cancer screening by the skin diagnostic system, a 3D
volumetric ultrasonic measurement is provided where the
three dimensions are X, y, z in the physical space. The x, y
resolution may come from the beamscanning principles and
the z resolution come from the back-reflected timing infor-
mation converted into distance by scaling. For example, the
timing information can be converted into distance by scaling
by the speed of sound. The timing can be scaled based on the
speed of sound, such as by scaling by the speed_of_sound/2
(the factor of 2 is included because of the pulse round trip).

FIG. 10 illustrates an example method 400 of processing
sensor data to generate skin condition identifications asso-
ciated with a skin region of the user. This method and other
methods herein are shown as sets of blocks that specify
operations performed but are not necessarily limited to the
order or combinations shown for performing the operations
by the respective blocks. One or more portions of method
400, and the other processes described herein (e.g., method
420, method 600, and/or method 800), can be implemented
by one or more computing devices such as, for example, one
or more computing devices of a computing environment as
illustrated in FIG. 1, 2, 17, 18, or 19. While in portions of
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the following discussion reference may be made to a par-
ticular computing environment, reference to which is made
for example only. The techniques are not limited to perfor-
mance by one entity or multiple entities operating on one
device. One or more portions of these processes can be
implemented as an algorithm on the hardware components
of the devices described herein.

At 402, method 400 can include authenticating a user via
a fingerprint scan of a first skin region of the user using a
three-dimensional (3D) sonic sensor of the user computing
device. The 3D ultrasonic sensor on a smartphone, for
example, can be used to sense fingerprints for user authen-
tication. The smartphone can authenticate a user via a
fingerprint scan of a first skin region of the user using the
three-dimensional sonic sensor of the user computing
device. In example embodiments during authentication, the
system generates two-dimensional ultrasonic measurement
data based at least in part on back-reflection associated with
one or more ultrasonic pulses contacting an outer surface of
the skin of the user while ignoring time-resolution of back-
reflection associated with sub-surface scattering.

At 404, a three-dimensional (3D) volumetric ultrasonic
measurement of a second skin region is generated by the one
or more processors of the user computing device. The
three-dimensional (3D) volumetric ultrasonic measurement
may be based at least in part on data obtained by the
three-dimensional (3D) sonic sensor e.g. (one or more
ultrasonic pulses of the three-dimensional (3D) sonic sen-
sor). Back-reflection of sonic pulses at the outer surface of
the skin can be measured to generate lateral data (e.g.,
x-direction) and longitudinal data (e.g., y-direction) indica-
tive of skin features at the outer surface of the user’s skin.
A pulse entering the below-surface region of the user’s skin
results in sub-surface scattering. Back-reflection of the pulse
entering the below-surface region can be measured to gen-
erate depth data indicative of skin features in the below-
surface region of the user’s skin. The received waveform(s)
that result from the backscattering can be time resolved to
determine depth data associated with the surface skin fea-
tures.

At 406, data indicative of the three-dimensional (3D)
volumetric ultrasonic measurement is input into one or more
machine-learning models. The one or more machine-learn-
ing models may be configured to identify one or more skin
cancer conditions in response to one or more 3D volumetric
measurement inputs. The machine-learned model(s) may be
configured to enforce an optimization using a dictionary of
skin cancer features in example embodiments. In another
example, the machine-learned model(s) may operate without
a dictionary. For example, a model may be trained to
generate classifications or detections based on raw input
data.

At 408, one or more skin condition identifications asso-
ciated with the second skin region of the user are generated
based at least in part on one or more outputs of the one or
more machine-learning models. For example, the machine-
learning system may identify one or more skin cancer
features in the dictionary for which a convergence rule is
met after computing a gradient descent on a data loss term
when comparing the dictionary feature(s) and the input data.

At 410, one or more outputs including the skin condition
identifications associated with the second skin region of the
user are provided. By way of example, the output(s) may
include audio, visual, or other outputs to indicate an assess-
ment of the second skin region. For instance, an application
on a smartphone or other device may generate a graphical
user interface with a display of the one or more skin cancer
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identifications. In some examples, the system may provide a
confidence score such as a probability associated with one or
more skin condition identification. In performing optimiza-
tion, the model can compute an error between a dictionary
feature and the input data. The error associated with the
matching feature can be indicative of the confidence. For
example, the confidence can be the inverse of the error in
example embodiments.

FIG. 11 illustrates an example method 420 of generating
three-dimensional (3D) ultrasonic measurement data based
on back-reflection associated with one or more ultrasonic
pulses. Method 420 is one example of a generating 3D
volumetric ultrasonic measurement data at 404 of FIG. 10.

At 422, one or more ultrasonic pulses are emitted from a
two-dimensional transducer array. The pulse transmitted by
the two-dimensional transducer array may be steered e.g.
(beamsteering) to increase the longitudinal (y) and lateral (x)
resolution of the two-dimensional array. The one or more
ultrasonic pulses contact the outer surface of the skin of the
user, returning back-reflection to the transducer. The back-
reflection may comprise data associated with one or more
ultrasonic pulses contacting an outer surface of the skin of
the user as well as data associated with sub-surface scatter-
ing of one or more ultrasonic pulses entering the below-
surface region of the skin region.

At 424, back-reflection associated with one or more
ultrasonic pulses contacting an outer surface of the skin of
the user is measured to generate two-dimensional ultrasonic
measurement data.

At 426, method 420 can include measuring back-reflec-
tion due to sub-surface scattering of pulse(s) entering a
below-surface region of the skin. At 426, time-resolution of
the back-reflection associated with sub-surface scattering of
one or more ultrasonic pulses entering the below-surface
region of the skin region can be measured to generate depth
ultrasonic measurement data. The received waveform(s) that
result from the backscattering can be time resolved to
determine depth data associated with the surface skin fea-
tures. Moreover, the received waveform is the integral
energy of pulses that are backreflected at one or more
epidermal and/or dermal layers below the outer surface.
Thus, the received waveform is not simply a time-shifted
version of the original waveform. Rather, its integral energy
is indicative of the sub-surface skin properties.

At 428, method 420 can include converting the back-
reflected timing information into distance based on scaling
by the speed of sound.

At 430, method 420 can include generating two-dimen-
sional ultrasonic measurement data based on the outer
surface back-reflection measured at 424. At 432, method 420
can include generating depth ultrasonic measurement data
based on the integral energy of the back-reflected pulses as
measured at 426 and time resolved at 428.

FIG. 12 depicts an example of the true regions of a
melanoma and a non-malignant tumor. FIG. 12 also depicts
the melanoma and the non-malignant tumor as the volumet-
ric data observed by a three-dimensional sonic sensor. A
voxel blurring phenomenon occurs because of the non-linear
sub-surface ultrasonic scattering. A widened, dispersion-
suffering pulse can be observed. This observation is illus-
trated above with simulated data where each column is a
measurement over depth and the dotted line is skin lesion
location as reference. The raw observed data may include
blurring that provides very little visual separation between
melanoma and non-melanoma when compared to the true
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representation where it can be observed that there is an
increased depth of feature which is a strong cue for diag-
nostics.

In accordance with example embodiments, a technical
approach is provided including sparse dictionary learning
(SDL) of skin cancer responses. In order to resolve original
skin cancer cell regions from observations, the skin diag-
nostic system can solve what can be phrased as a voxel-
deblurring problem. In accordance with example embodi-
ments, a novel sparse dictionary learning approach is
provided. This approach includes a machine learning
approach where a dictionary of melanoma features is con-
structed in a 3D sonic sensing image domain. The system
enforces an optimization problem to find the representation
that gives the best fit to this dictionary. The optimization can
be structured as a minimization shown below.

minimize % "|(X;)- Vil ™+ M| 1

The algorithm to solve the above optimization with deter-
ministic convergence guarantees can be an iterative shrink-
age thresholding (ISTA) method in example embodiments.
The above minimization is determined as a comparison of
the input data Y and the dictionary X of skin cancer features
X.

An example of the ISTA method in accordance with
example embodiments an include computing a gradient
descent on the data loss term as shown below for each skin
cancer feature x in the dictionary when compared with the
input data Y.

Va=h(h(X,)-1Y,)

X <=X—aVx,

A proximal map can be computed as shown below fol-
lowed by iterating the computation of the gradient descent
and the proximal computation until a convergence rule is
met. The convergence rule is a predetermined convergence
rule in example embodiments.

Xp<max(X;—-h,0)

FIG. 13 depicts a block diagram of an example computing
system for training and deploying a machine-learned model
in accordance with example embodiments of the present
disclosure. A sparse dictionary learning approach is pro-
vided that enables a consumer-level computing device to
generate diagnostics whose logic and process can be observ-
able by a clinician. A dictionary 520 of skin cancer or other
features can be constructed in a three-dimensional sonic
sensing domain and an optimization problem can be
enforced using machine-learning to find a representation in
the dictionary that best matches or fits to input volumetric
ultrasonic data. In example embodiments, the dictionary can
be constructed using sensor data 510 that is generated using
a sonic sensor having a higher resolution than the sonic
sensor of the computing device that is used to scan a user.
By way of example, the sonic sensor of a computing device
such as a smartphone for scanning a user may include an
array of tens to thousands of transducers (e.g., 5x5-50x50
arrays) while a laboratory device used to generate the
dictionary may include more transducers such as thousands
to millions of transducers (e.g., 100x100 array). In this
manner, three-dimensional sonic volumetric data 512 can be
generated with a more accurate representation of skin cancer
features that can be used by the model when comparing to
input data. Annotations 516 are applied to the sensor data to
generated annotated 3D sonic volumetric data 518. The
annotations can be human generated and/or machine-gener-
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ated in example embodiments. The annotated sensor data
518 is provided as a dictionary 520 of skin cancer features.

The dictionary 520 of skin cancer features can be
deployed with a sparse dictionary learning model 528 to
form a machine-learning diagnostic system 526. By way of
example, the machine-learning diagnostic system can pro-
vide an output indicative of one or more skin cancer features
from the dictionary that were the basis for the diagnosis. In
this manner, a clinician such as a doctor or other professional
may assess the process by which the system generated
diagnostic data. As such, the clinician not only has access to
the final output but also the process and data underlying the
diagnostic. Such an approach can enable a clinical and
technical evaluation of the output that may be useful in a
final determination by the clinician making an assessment.

As an example, the sparse dictionary learning model can
be configured to identify a skin condition that best represents
or fits with the measurement data generated by a user. The
dictionary of skin cancer features a machine learning
approach to gather data of melanoma features constructed in
a 3D sonic sensing image domain. After deployment, the
system can generate a three-dimensional volumetric ultra-
sonic measurement of a skin region of a user based on
ultrasonic pulses of a lower-resolution 3D sonic sensor. The
system can input the measurement data into the machine-
learned sparse dictionary learning model. The learning
model can determine from the dictionary the skin feature
that best represents or fits the input data.

FIG. 14 is a flowchart illustrating an example method 600
of generating one or more outputs of a skin condition
diagnostic system in accordance with an example embodi-
ment of the present disclosure. Method 600 is one example
of a sparse dictionary learning approach that addresses the
voxel blurring phenomena associated with lower resolution
Sensors.

At 604, method 600 can include computing one or more
errors associated with the dictionary skin condition features
and the 3D volumetric ultrasonic measurement data gener-
ated by the 3D sonic sensor. In an example at 604, method
600 can include computing a gradient descent on a data loss
term based on a difference between a dictionary feature and
the sonic measurement data. Further, the system can com-
pute a proximal map and iterate until a convergence rule is
met.

At 606, method 600 can include identifying one or more
skin condition features from the dictionary that minimize the
error calculated at 604. At 606, method 600 can include
identifying one or more features that result in satisfaction of
one or more convergence rules.

At 608, method 600 can include outputting data indicative
of one or more skin conditions. Various audio, visual, and/or
other outputs may be provided including an indication of a
skin cancer identification.

At 610, method 600 can optionally include outputting
data indicative of a confidence associated with the skin
condition(s). The confidence may be calculated based on an
inverse of the error at 604 for the identified skin cancer
condition(s).

FIG. 15 depicts a sample recovery of the true cell volumes
from the dispersion-corrupted volumetric sonic measure-
ments illustrated in FIG. 12. In FIG. 15, the recovered sparse
representations indicate the recovery of the true cell volumes
as a result of a sparse dictionary learning approach.

FIG. 16 is a flowchart depicting an example method 800
of training a machine-learned model to generate a diagnostic
classification for a skin region of a user based on 3D
volumetric sonic sensor data.
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At 802, method 800 can include generating data descrip-
tive of a machine-learned diagnostic model. According to
some example aspects, an end-to-end machine-learned
model is provided that takes as input raw volumetric ultra-
sonic data and generates as an output one or more indica-
tions of skin condition(s). A machine-learned detection or
classification approach can be provided to identify skin
conditions directly in response to 3D volumetric ultrasonic
data in example embodiments. In this example, a dictionary
of skin condition features is not necessarily provided. The
end-to-end model may operate without an on-device dic-
tionary of skin cancer features.

At 804, method 800 can include providing a first portion
of training data to the machine-learned model. The training
data may include sensor data and/or feature representation
data. The first portion of the training data can include 3D
volumetric sonic sensor data generated by a high resolution
sensor in example embodiments.

At 806, one or more inferences can be generated by the
machine-learned model based on the first portion of the
training data. For instance, in response to sensor data, an
inference of the presence of a particular skin cancer condi-
tion can be generated.

At 808, one or more errors are detected in association with
the inferences based on the second portion of the training
data. The second portion of the training data can include
annotations indicative of a presence or non-presence of a
particular skin condition. For example, the model trainer
may detect an error between the inference generated by the
model and the annotation for the corresponding first portion
of the training data.

At 810, method 800 can include calculating one or more
loss functions based on the detected errors. In some
examples, the loss functions can be based on an overall
output of the machine-learned model. The loss function can
be applied to the model for modification. In some examples,
a loss function may include a sub-gradient.

At 812, method 800 can include backpropagating the one
or more loss functions to the model. For example, a sub-
gradient calculated for the model can be backpropagated at
812.

At 814, one or more portions of the machine-learned
model can be modified based on the backpropagation at 812.
In some examples, the machine-learned model may be
modified based on backpropagation of the loss function such
as a by the sub-gradient.

FIG. 17 depicts a block diagram of an example computing
system 1000 that can be used to implement any of the
computing devices described herein. The computing system
1000 can include a user computing device 1002, a server
computing system 1030, and/or a training computing system
1050 that are communicatively coupled over a network
1080.

The user computing device 1002 can be any type of
computing device, such as, for example, a personal com-
puting device (e.g., laptop or desktop), a mobile computing
device (e.g., smartphone or tablet), a gaming console or
controller, a wearable computing device, an embedded com-
puting device, or any other type of computing device.

The user computing device 1002 includes one or more
processors 1012 and a memory 1014. The one or more
processors 1012 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, a FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
The memory 1014 can include one or more non-transitory
computer-readable storage mediums, such as RAM, ROM,
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EEPROM, EPROM, flash memory devices, magnetic disks,
etc., and combinations thereof. The memory 1014 can store
data 1016 and instructions 1018 which are executed by the
processor 1012 to cause the user computing device 1002 to
perform operations.

The user computing device 1002 can include one or more
portions of a machine-learned model 1020. In some imple-
mentations, the machine-learned model can store or include
one or more portions of a skin condition diagnostic model
(e.g., melanoma diagnostic model). For example, the
machine-learned model can be or can otherwise include
various machine-learned models such as neural networks
(e.g., deep neural networks) or other types of machine-
learned models, including non-linear models and/or linear
models. Neural networks can include feed-forward neural
networks, recurrent neural networks (e.g., long short-term
memory recurrent neural networks), convolutional neural
networks or other forms of neural networks.

In some implementations, the machine-learned model can
be received from the server computing system 1030 over
network 1080, stored in the user computing device memory
1014, and then used or otherwise implemented by the one or
more processors 1012. In some implementations, the user
computing device 1002 can implement multiple parallel
instances of the machine-learned model (e.g., to perform
parallel inference generation across multiple instances of
sensor data).

Additionally or alternatively to the machine-learned
model 1020, the server computing system 1030 can include
one or more machine-learned models 1040. The machine-
learned model(s) 1040 can generate data indicative of a skin
condition such as a cancer (e.g., melanoma) as described
herein.

Additionally or alternatively to the machine learned mod-
els 1020, one or more machine learned models 1040 can be
included in or otherwise stored and implemented by the
server computing system 1030 that communicates with the
user computing device 1002 according to a client-server
relationship. For example, the machine learned models 1040
can be implemented by the server computing system 1030 as
a portion of a web service (e.g., user movement recognition
service). Thus, the machine learned models can be stored
and implemented at the user computing device 1002 and/or
at the server computing system 1030. The one or more
machine learned models 1040 can be the same as or similar
to the one or more machine learned models 1020.

The user computing device 1002 can also include one or
more user input components 1022 that receive user input.
For example, the user input component 1022 can be a
touch-sensitive component that is sensitive to the touch of a
user input object (e.g., a finger or a stylus). The touch-
sensitive component can serve to implement a virtual key-
board. Other example user input components include a
microphone, a traditional keyboard, or other means by
which a user can provide user input.

The server computing system 1030 includes one or more
processors 1032 and a memory 1034. The one or more
processors 1032 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, a FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
The memory 1034 can include one or more non-transitory
computer-readable storage mediums, such as RAM, ROM,
EEPROM, EPROM, flash memory devices, magnetic disks,
etc., and combinations thereof. The memory 1034 can store
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data 1036 and instructions 1038 which are executed by the
processor 1032 to cause the server computing system 1030
to perform operations.

In some implementations, the server computing system
1030 includes or is otherwise implemented by one or more
server computing devices. In instances in which the server
computing system 1030 includes plural server computing
devices, such server computing devices can operate accord-
ing to sequential computing architectures, parallel comput-
ing architectures, or some combination thereof.

As described above, the server computing system 1030
can store or otherwise include one or more machine learned
models 1040. Example machine-learned models include
neural networks or other multi-layer non-linear models.
Example neural networks include feed forward neural net-
works, deep neural networks, recurrent neural networks, and
convolutional neural networks.

The user computing device 1002 and/or the server com-
puting system 1030 can train the machine learned models
1020 and/or 1040 via interaction with the training comput-
ing system 1050 that is communicatively coupled over the
network 1080. The training computing system 1050 can be
separate from the server computing system 1030 or can be
a portion of the server computing system 1030.

The training computing system 1050 includes one or more
processors 1052 and a memory 1054. The one or more
processors 1052 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, a FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
The memory 1054 can include one or more non-transitory
computer-readable storage mediums, such as RAM, ROM,
EEPROM, EPROM, flash memory devices, magnetic disks,
etc., and combinations thereof. The memory 1054 can store
data 1056 and instructions 1058 which are executed by the
processor 1052 to cause the training computing system 1050
to perform operations. In some implementations, the training
computing system 1050 includes or is otherwise imple-
mented by one or more server computing devices.

The training computing system 1050 can include a model
trainer 1060 that trains a machine-learned model stored at
the user computing device 1002 and/or the server computing
system 1030 using various training or learning techniques,
such as, for example, backwards propagation of errors. In
other examples as described herein, training computing
system 1050 can train a machine-learned model prior to
deployment for provisioning of the machine-learned model
at user computing device 1002 or server computing system
1030. The machine-learned model can be stored at training
computing system 1050 for training and then deployed to
user computing device 1002 and server computing system
1030. In some implementations, performing backwards
propagation of errors can include performing truncated
backpropagation through time. The model trainer 1060 can
perform a number of generalization techniques (e.g., weight
decays, dropouts, etc.) to improve the generalization capa-
bility of the models being trained.

In particular, the model trainer 1060 can train the machine
learned models 1020 and 1040 based on a set of training data
1062. The training data 1062 can include, for example, a
plurality of instances of sensor data, where each instance of
sensor data has been labeled with ground truth inferences
such as indications of motion complexity, motion intensity,
motion skill, etc. For example, the label(s) for each training
data can describe the position and/or movement (e.g., veloc-
ity or acceleration) of a touch input or an object movement.
In some implementations, the labels can be manually

20

25

40

45

60

65

20

applied to the training data by humans. In some implemen-
tations, the models can be trained using a loss function that
measures a difference between a predicted inference and a
ground-truth inference. In some implementations, the mod-
els can be trained using a combined loss function. The total
loss can be backpropagated through the model.

In some implementations, if the user has provided con-
sent, the training examples can be provided by the user
computing device 1002. Thus, in such implementations, the
machine learned model 1020 provided to the user computing
device 1002 can be trained by the training computing system
1050 on user-specific data received from the user computing
device 1002. In some instances, this process can be referred
to as personalizing the model.

The model trainer 1060 includes computer logic utilized
to provide desired functionality. The model trainer 1060 can
be implemented in hardware, firmware, and/or software
controlling a general purpose processor. For example, in
some implementations, the model trainer 160 includes pro-
gram files stored on a storage device, loaded into a memory
and executed by one or more processors. In other imple-
mentations, the model trainer 1060 includes one or more sets
of computer-executable instructions that are stored in a
tangible computer-readable storage medium such as RAM
hard disk or optical or magnetic media.

The network 1080 can be any type of communications
network, such as a local area network (e.g., intranet), wide
area network (e.g., Internet), or some combination thereof
and can include any number of wired or wireless links. In
general, communication over the network 1080 can be
carried via any type of wired and/or wireless connection,
using a wide variety of communication protocols (e.g.,
TCP/IP, HTTP, SMTP, FTP), encodings or formats (e.g.,
HTML, XML), and/or protection schemes (e.g., VPN,
secure HTTP, SSL).

FIG. 18 illustrates one example computing system that
can be used to implement the present disclosure. Other
computing systems can be used as well. For example, in
some implementations, the user computing device 1002 can
include the model trainer 1060 and the training data 1062. In
such implementations, the machine learned model 1020 can
be both trained and used locally at the user computing device
1002. In some of such implementations, the user computing
device 1002 can implement the model trainer 1060 to
personalize the machine learned model 1020 based on
user-specific data.

FIG. 19 depicts a block diagram of an example computing
device 1110 that performs according to example embodi-
ments of the present disclosure. The computing device 1110
can be a user computing device or a server computing
device.

The computing device 1110 includes a number of appli-
cations (e.g., applications 1 through N). Each application
contains its own machine learning library and machine-
learned model(s). For example, each application can include
a machine-learned model. Example applications include a
text messaging application, an email application, a dictation
application, a virtual keyboard application, a browser appli-
cation, etc.

As illustrated in FIG. 19, each application can commu-
nicate with a number of other components of the computing
device, such as, for example, one or more sensors, a context
manager, a device state component, and/or additional com-
ponents. In some implementations, each application can
communicate with each device component using an API
(e.g., a public API). In some implementations, the API used
by each application is specific to that application.
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FIG. 19 depicts a block diagram of an example computing
device 1150 that performs according to example embodi-
ments of the present disclosure. The computing device 1150
can be a user computing device or a server computing
device.

The computing device 1150 includes a number of appli-
cations (e.g., applications 1 through N). Each application is
in communication with a central intelligence layer. Example
applications include a text messaging application, an email
application, a dictation application, a virtual keyboard appli-
cation, a browser application, etc. In some implementations,
each application can communicate with the central intelli-
gence layer (and model(s) stored therein) using an API (e.g.,
a common API across all applications).

The central intelligence layer includes a number of
machine-learned models. For example, as illustrated in FIG.
19, a respective machine-learned model (e.g., a model) can
be provided for each application and managed by the central
intelligence layer. In other implementations, two or more
applications can share a single machine-learned model. For
example, in some implementations, the central intelligence
layer can provide a single model (e.g., a single model) for all
of the applications. In some implementations, the central
intelligence layer is included within or otherwise imple-
mented by an operating system of the computing device
1150.

The central intelligence layer can communicate with a
central device data layer. The central device data layer can
be a centralized repository of data for the computing device
1150. As illustrated in FIG. 19, the central device data layer
can communicate with a number of other components of the
computing device, such as, for example, one or more sen-
sors, a context manager, a device state component, and/or
additional components. In some implementations, the cen-
tral device data layer can communicate with each device
component using an API (e.g., a private API).

The technology discussed herein makes reference to serv-
ers, databases, software applications, and other computer-
based systems, as well as actions taken and information sent
to and from such systems. One of ordinary skill in the art
will recognize that the inherent flexibility of computer-based
systems allows for a great variety of possible configurations,
combinations, and divisions of tasks and functionality
between and among components. For instance, server pro-
cesses discussed herein may be implemented using a single
server or multiple servers working in combination. Data-
bases and applications may be implemented on a single
system or distributed across multiple systems. Distributed
components may operate sequentially or in parallel.

While the present subject matter has been described in
detail with respect to specific example embodiments thereof,
it will be appreciated that those skilled in the art, upon
attaining an understanding of the foregoing may readily
produce alterations to, variations of, and equivalents to such
embodiments. Accordingly, the scope of the present disclo-
sure is by way of example rather than by way of limitation,
and the subject disclosure does not preclude inclusion of
such modifications, variations and/or additions to the present
subject matter as would be readily apparent to one of
ordinary skill in the art.

What is claimed is:

1. A computer-implemented method for generating skin
condition diagnostics, comprising:

authenticating, by one or more processors of a user

computing device, a user via a fingerprint scan of a first
skin region of the user using a three-dimensional (3D)
sonic sensor of the user computing device;
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generating, by the one or more processors, a three-
dimensional (3D) volumetric sonic measurement of a
second skin region of the user based at least in part on
one or more sonic pulses of the 3D sonic sensor;

inputting, by the one or more processors, data indicative
of the 3D volumetric sonic measurement into one or
more machine-learning models configured to identify
one or more skin conditions in response to one or more
3D volumetric sonic measurement inputs;
generating, by the one or more processors based on one or
more outputs of the one or more machine-learned
models, one or more skin condition identifications
associated with the second skin region of the user; and

providing, by the user computing device, one or more
outputs including the one or more skin condition iden-
tifications associated with the second skin region of the
user.

2. The computer-implemented method of claim 1,
wherein generating, by the one or more processors, a three-
dimensional (3D) volumetric sonic measurement of the
second skin region of the user using the 3D sonic sensor,
comprises:

generating two-dimensional sonic measurement data

based at least in part on back-reflection associated with
one or more sonic pulses contacting an outer surface of
the second skin region of the user; and

generating depth ultrasonic measurement data based at

least in part on time-resolving back-reflection associ-
ated with sub-surface scattering of one or more sonic
pulses entering a below-surface region of the second
skin region of the user.

3. The computer-implemented method of claim 2,
wherein authenticating, by one or more processors of the
user computing device, the user via the fingerprint scan of
the first skin region of the user using the 3D sonic sensor of
the user computing device comprises:

generating two-dimensional sonic measurement data

based at least in part on back-reflection associated with
one or more sonic pulses contacting an outer surface of
the second skin region of the user while ignoring
time-resolution of back-reflection associated with sub-
surface scattering.

4. The computer-implemented method of claim 2,
wherein generating depth sonic measurement data based at
least in part on time-resolving back-reflection associated
with sub-surface scattering of one or more sonic pulses
entering the below-surface region of the second skin region
of the user comprises:

converting back-reflected timing information into dis-

tance based on scaling by a speed of sound.
5. The computer-implemented method of claim 2,
wherein:
the 3D sonic sensor comprises a two-dimensional array of
transducers that transmit and receive sonic signals;

generating two-dimensional ultrasonic measurement data
based at least in part on back-reflection associated with
one or more sonic pulses contacting the outer surface of
the second skin region of the user comprises beam-
forming to increase a resolution of the two-dimensional
array.

6. The computer-implemented method of claim 2,
wherein:

the back-reflection associated with sub-surface scattering

of one or more ultrasonic pulses entering the below-
surface region of the second skin region of the user
includes an integral energy of pulses that are back-



US 11,923,090 B2

23

reflected by at least one of an epidermal layer or a
dermal layer below a surface of the second skin region
of the user.

7. The computer-implemented method of claim 1,
wherein:

the one or more machine-learned models include a dic-

tionary of skin condition features in a 3D sonic volu-
metric domain; and

the method further comprises generating, by the one or

more processors, the one or more outputs of the one or
more machine-learned models by enforcing an optimi-
zation to identify at least one feature in the dictionary
that minimizes an error between the data indicative of
the 3D volumetric sonic measurement and the diction-
ary of skin condition features.

8. The computer-implemented method of claim 7,
wherein:

the 3D sonic sensor of the user computing device com-

prises a first number of transducers; and

the dictionary of skin condition features includes data

based on a second three-dimensional sonic sensor hav-
ing a greater, second number of transducers.

9. The computer-implemented method of claim 8,
wherein identifying at least one feature in the dictionary that
minimizes the error between the data indicative of the 3D
volumetric sonic measurement and the dictionary of skin
condition features comprises:

applying a voxel blurring simulation to the dictionary of

skin condition features to simulate voxel blurring asso-
ciated with the 3D sonic sensor of the user computing
device.

10. The computer-implemented method of claim 7,
wherein generating, by the one or more processors based on
an output of the one or more machine-learned models, one
or more inferences of skin condition associated with the
second skin region of the user comprises:

generating a confidence value based at least in part on the

error between the data indicative of the 3D volumetric
sonic measurement and the dictionary of skin condition
features.

11. The computer-implemented method of claim 1,
wherein:

the one or more machine-learned models include a clas-

sification model trained to identify one or more skin
conditions based on a classification of 3D sonic volu-
metric data;

the method further comprises generating, by the one or

more processors, the one or more outputs of the one or
more machine-learned models by classifying the data
indicative of the 3D volumetric sonic measurement and
generating one or more inferences associated with the
one or more skin conditions.

12. The computer-implemented method of claim 1, fur-
ther comprising training, by one or more second processors,
the one or more machine-learning models using training data
that includes 3-D sonic volumetric data labeled to indicate a
presence or non-presence of skin cancer.

13. The computer-implemented method of claim 12,
wherein training, by one or more second processors, the one
or more machine-learning models using training data that
includes 3-D sonic volumetric data labeled to indicate a
presence or non-presence of skin cancer comprises:

obtaining data descriptive of the one or more machine-

learning models;

providing a first portion of one or more sets of training

data as input to the one or more machine-learning
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models, the first portion of the one or more sets of
training data including sensor data associated with one
Or more sensors;

obtaining, as output of the one or more machine-learning
models, data indicative of a skin cancer condition based
on the first portion of the one or more sets of training
data;

determining one or more loss functions based at least in

part of output of the one or more machine-learning
models and a second portion of the one or more sets of
training data; and

modifying at least a portion of the one or more machine-

learning models based at least in part on the one or
more loss functions.

14. The computer-implemented method of claim 13,
wherein:

the first portion of the one or more sets of training data

include sensor data associated with a melanoma; and
the second portion of the one or more sets of training data
include an annotation indicative of the melanoma.

15. The computer-implemented method of claim 1,
wherein:

the user computing device is a smartphone.

16. The computer-implemented method of claim 1,
wherein:

the 3D sonic sensor is a 3D ultrasonic sensor; and

the 3D volumetric sonic measurement is a 3D volumetric

ultrasonic measurement.

17. A computing device, comprising:

one or more three-dimensional (3D) sonic sensors;

one Or More processors;

one or more non-transitory computer-readable media that

collectively store instructions that when executed by

the one or more processors cause the one or more

processors to perform operations, the operations com-

prising:

generating a three-dimensional (3D) volumetric sonic
measurement of a skin region of a user based at least
in part on one or more sonic pulses of the one or
more 3D sonic sensors;

inputting data indicative of the 3D volumetric sonic
measurement into one or more machine-learning
models configured to identify one or more skin
conditions in response to one or more 3D volumetric
sonic measurement inputs;

generating, based on one or more outputs of the one or
more machine-learned models, one or more skin
condition identifications associated with the skin
region of the user; and

providing one or more outputs including the one or
more skin condition identifications associated with
the skin region of the user.

18. The computing device of claim 17, wherein generat-
ing a three-dimensional (3D) volumetric sonic measurement
of the skin region of the user using the 3D sonic sensor,
comprises:

generating two-dimensional sonic measurement data

based at least in part on back-reflection associated with
one or more sonic pulses contacting an outer surface of
the skin region of the user; and

generating depth ultrasonic measurement data based at

least in part on time-resolving back-reflection associ-
ated with sub-surface scattering of one or more sonic
pulses entering a below-surface region of the skin
region of the user.

19. One or more non-transitory computer-readable media
storing computer instructions, that when executed by one or



US 11,923,090 B2
25

more processors, cause the one or more processors to
perform operations, the operations comprising:

generating a three-dimensional (3D) volumetric sonic

measurement of a skin region of a user based at least in
part on one or more sonic pulses of one or more 3D 5
sonic sensors;
inputting data indicative of the 3D volumetric sonic
measurement into one or more machine-learning mod-
els configured to identify one or more skin conditions
in response to one or more 3D volumetric sonic mea- 10
surement inputs;
generating, based on one or more outputs of the one or
more machine-learned models, one or more skin con-
dition identifications associated with the skin region of
the user; and 15

providing one or more outputs including the one or more
skin condition identifications associated with the skin
region of the user.

20. The one or more non-transitory computer-readable
media of claim 19, wherein generating a three-dimensional 20
(3D) volumetric sonic measurement of the skin region of the
user using the one or more 3D sonic sensors, comprises:

generating two-dimensional sonic measurement data

based at least in part on back-reflection associated with
one or more sonic pulses contacting an outer surface of 25
the skin region of the user; and

generating depth ultrasonic measurement data based at

least in part on time-resolving back-reflection associ-
ated with sub-surface scattering of one or more sonic
pulses entering a below-surface region of the skin 30
region of the user.
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